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Toward Real-World Super Resolution With
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Abstract— Despite efforts to construct super-resolution (SR)
training datasets with a wide range of degradation scenarios,
existing supervised methods based on these datasets still struggle
to consistently offer promising results due to the diversity of
real-world degradation scenarios and the inherent complexity
of model learning. Our work explores a new route: integrating
the sample-adaptive property learned through image intrinsic
self-similarity and the universal knowledge acquired from large-
scale data. We achieve this by uniting internal learning and
external learning by an unrolled optimization process. With
the merits of both, the tuned fully-supervised SR models can
be augmented to broadly handle the real-world degradation
in a plug-and-play style. Furthermore, to promote the effi-
ciency of combining internal/external learning, we apply an
attention-based weight-updating method to guide the mining
of self-similarity, and various data augmentations are adopted
while applying the exponential moving average strategy. We con-
duct extensive experiments on real-world degraded images and
our approach outperforms other methods in both qualitative
and quantitative comparisons. Our project is available at:
https://github.com/ZahraFan/AdaSSR/.

Index Terms— Super-resolution, real-world SR, semi-
supervised learning, self-similarity.

I. INTRODUCTION

S INGLE-IMAGE super-resolution is a fundamental prob-
lem in computer vision and image processing, attracting

significant research interest in recent years [1], [2], [3], [4],
[5], [6], [7], [8]. The task aims to recover a high-resolution
(HR) image from its low-resolution (LR) observation. Many
existing super-resolution (SR) methods focus on restoring the
fine details of high-resolution images by learning the mapping
from the low-resolution input to the high-resolution output.
However, the majority of these methods [2], [9], [10], [11],
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[12], [13], [14] are trained using synthetic datasets or simpli-
fied scenarios, which may fail to super-resolve the complex
and challenging real-world images. In real-world scenarios,
images often suffer from diverse degradations, e.g., noise,
blur, compression artifacts, and low resolution, which can
significantly impair their visual quality and limit their practical
utility. Considering this, researchers have conducted studies
on super-resolution with unknown degradation [3], [15], [16].
To be more specific, they aim to recover high-resolution
images from low-resolution images degraded by unknown and
complex degradations and further aims to achieve stable and
outstanding SR performance in the real world.

As for real-world SR, the mainstream super-resolution
methods can be divided into two categories. The first cate-
gory is external learning, which mainly relies on supervised
learning. Some researches [15], [16], [17] use various synthetic
degradation models consisting of blur, downsampling, noise,
and compression artifacts to synthesize training data. These
approaches aim to enhance the model’s generalization to
various degradation factors, with the goal of improving the
model’s usability in real-world scenarios. Some works [18],
[19], [20] apply generative adversarial networks [21] (GAN) to
learn the implicit degradation model from the data. In external
learning, a large amount of paired LR-HR data is collected as
external datasets. The models are trained on diverse synthetic
degradations, with fixed parameters during testing. However,
due to the complexity of degradation in real scenarios, this
kind of method may fail to model unknown degradations and
to restore the LR real-world images adaptively.

The second category is internal learning, which only per-
forms training based on the single LR image itself. These
methods [22], [23], [24] mainly rely on self-supervised learn-
ing. One basis is that the degradation condition is generally
shared in the entire LR image. Furthermore, real-world images
show prevalent characteristics of self-similarity [25], that
image patches with similar content tend to recur among
different locations and scales within the same image. Some
researchers take advantage of self-similarity that lies in
images and mine degradation information directly from the
LR input image [26], [27]. For instance, ZSSR [22] trains
a small-scale convolutional neural network (CNN) during
inference with the specified LR input. KernelGAN [23] utilizes
GAN to estimate blur kernels and enhance the quality of
reconstruction. Therefore, the internal learning approach can
capture sample-dependent degradation properties. Despite its
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Fig. 1. The proposed adaptive self-similarity mining super-resolution
(AdaSSR) is a semi-supervised method. Two kinds of real-world SR
methods, Real-ESRGAN [3] (supervised external learning method) and
KernelGAN [23] (self-supervised internal learning method) are compared.
AdaSSR combines the strengths of both. The NIQE and PI metrics are better
when smaller, and the luminance of the green color indicates the image quality.

strengths, possessing less knowledge of general signal priors
from images limits its restoration capabilities, resulting in its
insufficiency in producing visually satisfactory results.

The ideal real-world super-resolution method should possess
both powerful and generalizable capabilities for describing
degradation and visual priors, as well as the ability of sample-
adaptive degradation perception and processing. Thus, the
ideal paradigm of SR should combine the process of fitting to
a wide range of diverse degradation and performing targeted
modeling for a specific given testing image/scene. Combining
internal learning and external learning, Tirer et al. [28] use LR
input to fine-tune the CNN denoiser in IDBP [29]. MZSR [30]
carries out rapid adaptation of model-agnostic meta-learning
based on internal data. However, these endeavors have failed
to accurately analyze and effectively integrate the respective
advantages of internal and external learning for real-world
SR scenarios. Particularly, critical issues such as how these
two are combined, the extent of their contribution during
integration, and the specific interaction between them have not
been well addressed. Consequently, it leaves room for further
performance improvement.

In this paper, we propose a simple and practical framework,
named Adaptive Self-similarity mining Super-Resolution
(AdaSSR), a semi-supervised method combining the advan-
tages of external and internal learning. As shown in Fig. 1,
AdaSSR aims to integrate the sample-dependent degradation
characteristics learned adaptively from LR self-similarity and
the general sense knowledge extracted from a large dataset.
We achieve this by constructing a deep network inspired by
the unrolling process from the alternating direction method
of multiplier (ADMM) solver. To make the knowledge of
internal/external learning better integrated, we also introduce a
self-similarity-informed attention-based method to guide the
internal learning process. We generate the attention map with
the self-attention mechanism, which can emphasize regions

with high self-similarity in the image. Our framework can
be applied to work jointly with various external learning
methods and offers better performance in a plug-and-play
manner. Through quantitative and qualitative comparisons,
we demonstrate that our approach outperforms state-of-the-art
methods on real-world LR images.

In summary, our contribution is threefold:
• We propose a novel Adaptive Self-similarity mining

Super-Resolution (AdaSSR) framework, which is inspired
by the unrolled process of an optimization function that
unifies the external and internal learning for SR. It
adaptively learns degradation characteristics from image
self-similarity and generalizable knowledge from external
datasets.

• We introduce the self-similarity-informed attention maps
to guide the internal learning process, resulting in a plug-
and-play solution to boost the performance of external
learning models, and can handle the sample-dependent
degradations presented in real-world environments.

• We analyze the strengths and limitations of internal
learning and external learning in SR with unknown
degradation scenarios and study how to combine the
advantages of both. The analysis indicates that inter-
nal learning relies more on self-similarity capable of
describing sample-dependent degradation, while external
learning is more dependent on the feature extraction
capabilities learned from a diverse range of data.

The paper is organized as follows. We first review the
related work in Section II. Then, in Section III, we conduct
an empirical analysis of internal learning and external learning
to show their characteristics, and build the proposed semi-
supervised AdaSSR inspired from the unrolling process from
an optimization function that integrates internal and external
learning. Experimental results are presented in Section IV.
Conclusions are summarized in Section V.

II. RELATED WORK

A. Image Super-Resolution Network Architecture

Image super-resolution has drawn great research interest
in recent years [2], [5], [10], [31], [32], [33]. As a pioneer
work of deep-learning based image SR method, SRCNN [31],
which builds a three-layer CNN to reconstruct HR images
from bicubic-degraded LR images, proves the ability of CNNs
to extract local correlation of images. Because such ability is
critical to image SR tasks, CNNs have been used widely since
that. Ledig et al. [2] propose to build a deep CNN with residual
connections to improve the reconstruction performance. Zhang
et al. [33] take channel-attention mechanism to maintain
better local correlation of features. Liang et al. [5] apply
vision transformers [34], [35] in SR networks. Researchers
have also discovered the powerful role of the self-attention
mechanism in SR tasks. Liang et al. [5] use a shift window
local self-attention mechanism for deep feature extraction and
propose a strong Transformer model for image restoration.
Chen et al. [4] combine both channel attention and window-
based self-attention mechanisms for activating more pixels for
better restoration. Lei and Shi [36] propose a hybrid-scale
self-attention-based network for remote sensing image SR,
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considering self-similarity is strong in the input. Liu et al. [37]
incorporate contrastive learning-based degradation representa-
tion extraction with the self-attention mechanism for image
SR with unknown degradation.

Along with the development of generative models, they
are introduced into SR tasks to improve perceptual quality.
Ledig et al. [2] build a generative adversarial network-
based [21] SR model. Menon et al. [38] use a pre-trained
GAN as a generative prior and explore the latent space to
find appropriate high-resolution images that can be degraded
to the input LR images as SR results. Some researchers [39],
[40] embed pre-trained GANs into SR networks as knowledge
prior to assisting the SR task on LR images in certain domains.
Dahl et al. [41] leverage auto-regressive models to generate SR
images in a pixel-wise way. Lugmayr et al. [42] use normal-
izing flow models [43] to get multiple reasonable SR results
corresponding to one LR image input. Saharia et al. [14] and
Ma et al. [44] regard LR images as conditions of diffusion
models [45] and achieve the goal of SR by LR-conditional
generating. The mentioned works are representative works of
different network structure designs in the SR field, and various
network designs can be adapted into our method AdaSSR in
a plug-and-play manner.

B. Real-World Image Super-Resolution

The gap between real LR images and synthesized LR
images during training could cause issues for practical real-
world SR. To the end of mitigating the effect, an intuitive
way to train the SR model is to build degraded images close
to real-world LR images and force the model to learn such an
unknown degradation. Pioneer work, SRMD [17], builds LR
images by blurring and adding noise and provides the features
of blur kernel and noise as model input. Cai et al. [46] collect
a real LR image dataset which can be used to evaluate the
performance of real-world SR models. Zhang et al. [47] design
a random degradation process to generate LR images imitating
real-world LR images. Wang et al. [3] improve the process to
make it closer to real-degradation and use an existing GAN-
based SR model [11], achieving impressive results. In practice,
the synthesized LR-HR pair can be used to train any end-
to-end SR models and enable them to process real-world LR
images. Huang et al. [15] propose to iteratively apply a kernel-
estimator and a reconstructor to refine the results of each other.
Ates et al. [48] also apply an iterative method which contains
kernel reconstruction, noise estimation and SR reconstruction
in each iteration. Wang et al. [20] utilize contrastive learning
methods to extract abstract degradation representations of LR
images. Li et al. [49] extend the framework of DASR [20] to
images with more general degradation.

Some works have achieved real-world SR capabilities by
learning from real-world HR and LR data. Song et al. [50] sim-
ulate the unknown downsampling process through an adver-
sarial training framework, eliminating the need for restrictive
prior knowledge or paired examples. Zhang et al. [51] pro-
pose an auxiliary-LR generator and AdaSTN to address the
misalignment between short-focus low-resolution images and
telephoto ground-truth images, which achieves self-supervised

learning for the real-world dual camera scene. Chen et al. [52]
combine supervised pre-training with self-supervised learning
to improve the adaptability of image SR models on real-world
images while training an LR reconstructor with paired real-
world data. Compared to these works, our method does not
require any real degradation data for the test images.

Due to the self-similarity of images, several one-shot meth-
ods that attempt to mine degradation information in the input
LR image itself have been proposed. Shocher et al. [22] train
a small-scale CNN of the specified LR input during inference.
Bell-Kligler et al. [23] leverage a GAN to estimate blur
kernels to improve the reconstruction quality. Soh et al. [30]
transfer a pre-trained SR model with few parameter updates.
Yang et al. [53] propose an unsupervised kernel estimation
model with a Markov chain Monte Carlo sampling process
on random kernel distributions. DGDML-SR [24] samples
HR and LR patches according to the depth map and unites
the degradation network and the SR network together. The
proposed AdaSSR integrates the strengths of both external
and internal learning, leveraging the robust feature extraction
capability acquired from external data and the sample-adaptive
image reconstruction ability derived from self-similarity.

III. ADAPTIVE SELF-SIMILARITY MINING
SUPER-RESOLUTION (ADASSR)

A. Empirical Analysis: Internal Learning vs. External
Learning

Internal learning SR leverages the information inherent in
the LR image itself to enhance the performance of SR. On the
contrary, External learning SR utilizes valuable knowledge
from external datasets to reconstruct LR images.

We first analyze the characteristics of internal/external learn-
ing for SR empirically, and the results are shown in Fig. 2.
Below is the experimental setup. We first conduct internal
learning and subsequently proceed with external learning on
the inherited network parameter. Circular points represent the
results obtained after the convergence of internal learning,
while each data point on the line represents the results obtained
through external learning after training with a different number
of external images. We employ a lightweight CNN-based SR
network, and each data point represents convergence under
different settings. For the internal learning phase, we mainly
followed the settings in ZSSR [22]. We generate a set of
LR-HR patch pairs from the test image y under 4 different
settings: Oracle, Desired, Estimated and Mismatched. After
the internal learning, we proceed to the second phase, external
learning. The horizontal axis, #External, represents the quan-
tity of external data used. The test image and external images
undergo 4× down-sampling using random blur kernels, with
each image a unique blur kernel, while the kernel generation
is inspired by classic works in real-world SR [3]. As for the
LR-HR pairs used in each internal learning setting, Oracle
utilizes ground truth HR x and LR y generated with kernel kg

for training, representing the theoretical upper bound achieved
by the network. Desired involves down-sampling y using the
kernel kg , resulting in yg

d , paired with y. Estimated estimates
the down-sampling blur kernel ke from y and down-samples
y to obtain ye

d , paired with LR. Mismatched utilizes bicubic
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Fig. 2. An empirical analysis of the characteristics of using internal/external
learning for SR with unknown degradations. A brief description of the
experimental setup is provided below. Oracle: ground truth x paired with LR
y that generated with kernel kg . Desired: yg

d obtained with kernel kg , paired
with y. Estimated: ye

d obtained with the estimated blur kernel ke , paired
with y. Mismatched: yb

d obtained by bicubic downsampling and paired with
L R. Absent: no internal learning, randomly initialize the network. #External
refers to the number of external data used, with the leftmost end representing
complete internal learning, and the increase in values showcasing the impact
of the second stage, external learning, on different scales of external data.

downsampling generated yb
d paired with y. Absent indicates

the absence of the internal learning stage, with the network
parameters randomly initialized. The external learning process
trains on high-quality external data and corresponding LR
generated with random blur kernels.

From experiment results shown in Fig. 2, we can qualita-
tively observe certain characteristics of internal learning and
external learning:
• The restoration ability of external learning primarily

stems from the generalization obtained by fitting a large
amount of data. With an increase in external training data,
although the images are affected by various mismatched
types of degradation, the feature extraction capabilities
of the network get stronger, leading to enhanced gener-
alization and the capacity to handle diverse degradation
scenarios.

• Internal learning trains in a sample-dependent manner to
adapt to the targeted degradation environment. It lacks
training data and relies on the self-similarity of the test
image, making the estimation of the current degradation
scene a key factor in its performance improvement. When
the estimation of degradation is not accurate enough, its
performance may lag behind that of external learning
supported by large datasets. However, if the degradation
estimation approaches the Desired level, it can achieve
superior results with minimal computational cost com-
pared to external learning.

• The combination of the advantages of internal learning
and external learning is susceptible to catastrophic forget-
ting. In internal learning, a clear decline in performance is
observed in the order of Oracle, Desired, Estimated, and
Mismatched settings. However, after external learning,

such as #External = 100, the performances of these
settings become similar, resembling the Absent setting.
Preserving the knowledge acquired during the internal
learning phase is challenging for neural networks.

Inspired by the above observations, we propose AdaSSR,
a semi-supervised method that combines the merits of fully-
supervised and self-supervised approaches. Our approach takes
advantage of the generalization performance of external learn-
ing models and the sample-adaptive capacity of internal
learning. By comprehensively leveraging the strengths of both
sides, we can give a better SR result for real-world LR images.

B. Formulation and Optimization Function

This section formulates the optimization function, from
which we derive an alternative solution and inspires the
construction of our AdaSSR. Let yr and xr respectively denote
the low-quality image and the ideal high-quality image in real-
world testing scenarios. Let (yi , xi ) denote the paired training
data and xi is from a large-scale collected external dataset
8, where i = 1, 2, . . . , M and M is the total pair number.
yi is downsampled from xi with a synthetic degradation. The
network is expected to learn to combine the advantages of
internal learning and external learning in a semi-supervised
learning manner as follows:

min
2
Lp (N (yr |2) , xr )+ λ

∑
xi∈8

Lp (N (yi |2) , xi ) , (1)

where 2 represents the parameters of an SR neural network,
Lp (N (y|2), x) measures the difference between the SR result
from y under parameters 2 and high-resolution image x ,
N (·) represents the neural network operation, and λ is the
weighting parameter. It can be considered as the generalized
reconstruction loss during network training in a broad sense.

Ideally, the results can be obtained via solving the optimiza-
tion problem (1), and it is expected to obtain the SR model
by unrolling the optimization function. However, in real-
world image SR inference, each image undergoes variations
attributed to degradation factors. There should exist a strong
correlation between 2 and characteristics of yr , while 8 can
remain stable for all inference time comparatively. To perform
SR on LR images in real-world scenarios, we can employ
the same large-scale synthetic dataset 8. Consequently, taking
into account the generality and ease of method design, it is
preferable to optimize these two losses separately, allowing
us to focus on the characteristics of yr and, to extent, avoid
redundant training on 8. Based on the above considerations,
we derive a plug-and-play method that is compatible with most
existing fully-supervised SR models. An unfolding inference
for solving problem (1) is developed as the clues for the
network construction that are inspired by ADMM [54]. The
ADMM solves the optimization problem as follows:

2̂ = argmin
2

f (2)+ λg(2). (2)

The optimization problem (1) can be converted into formula
as Eq. (2) with f (2) = Lp (N (yr |2) , xr ) and g(2) =∑
xi∈8

Lp (N (yi |2) , xi ). The unconstrained optimization prob-

lem Eq. (2) can be converted into a constrained problem by
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introducing an auxiliary variable 2e:

(2̂, 2̂e) = argmin
2,2e

f (2)+ λg (2e) , s.t. 2 = 2e. (3)

Considering the corresponding augmented Lagrangian
function:

L(2, 2e, u) = f (2)+ λg(2e)+ uT (2−2e)

+ µ∥2−2e∥
2, (4)

where µ is the penalty parameter. The minimizer of Eq. (3)
can be found by solving a sequence of subproblems:

2(k+1)
e = argmin

2e

λg(2e)+ µ

∥∥∥2e − 2̃(k)
e

∥∥∥2
, (5)

2(k+1)
= argmin

2

f (2)+ µ

∥∥∥2− 2̃(k)
∥∥∥2

, (6)

u(k+1)
= u(k)

+

(
2(k+1)

e −2(k+1)
)

, (7)

in which u(k) def
= (2/µ)u(k) is the scaled Lagrange multiplier,

2̃
(k)
e

def
= 2(k)

− u(k) and 2̃(k) def
= 2

(k+1)
e + u(k). When

both functions f (x) and g(x) exhibit properties of being
closed, proper, and convex, and assuming the existence of a
saddle point for the Lagrangian function Eq. (4), it can be
demonstrated that the iterations given by Eq. (5)–(7) converge
towards a solution for Eq. (3). This assumption holds true for a
linear SR network with common MSE training loss. For more
complex networks, such as Real-ESRGAN, we experimentally
demonstrate the convergence in Section IV-C. Specifically,
when the number of iterations is set to 1, we can pre-train
on a large-scale external dataset. For any given real image,
sharing the pre-trained model and only conducting internal
learning, we can obtain a trade-off in the solution for Eq. (2)
in a resource-efficient way.

1) External Learning: Process on external dataset 8. Sub-
stituting g(2) =

∑
xi∈8

Lp (N (yi |2) , xi ) into the iteration

formula (5), we obtain:

2(k+1)
e

= argmin
2e

λ
∑
xi∈8

Lp (N (yi |2e) , xi )+ µ

∥∥∥2e − 2̃(k)
e

∥∥∥2
. (8)

This process focuses on fitting to the external dataset. Espe-
cially for the first iteration, the initialization of 2 can be used
to support the SR in the general scene, and the regularization
term ∥2e − 2̃

(k)
e ∥

2 can be ignored. In this way, the iteration
is entirely consistent with supervised learning methods:

2(1)
e = arg min

2e

∑
xi∈8

Lp (N (yi |2e) , xi ) . (9)

Our framework initializes the model with a supervised method
pre-trained parameters 2

(1)
e following the above form.

2) Internal Learning: Substituting f (2) =

Lp (N (yr |2) , xr ) into the iteration formula (6), we obtain
the following optimization problem:

2(k+1)
= argmin

2

Lp (N (yr |2) , xr )+ µ

∥∥∥2− 2̃(k)
∥∥∥2

. (10)

Fig. 3. Visualization of self-similarity and attention score calculation. Three
patches at different scale levels are outlined with white boxes, which share
similar content. The blue arrows indicate the inherent similarity among them.
The lower part depicts the attention reactions, which are from the attention
model, of all regions to Patch P2, marked with the red square. Similar
patches contribute significantly to the attention reactions. The sum of attention
reactions from the image yields the attention score for the patch represented
by the red square.

For the term Lp (N (yr |2) , xr ), we cannot obtain the xr
for training supervision. Following most internal learning SR
methods [22], [23] built on self-similarity, we also obtain
training pairs by further down-sampling the input yr with
the estimated kernel to derive (yr,d , yr ) pair, where d is the
downsampling scale. The kernel is estimated in a self-learning
manner. As shown in Fig. 3, the self-similarity means that
similar patches recur across scales within natural images. For
instance, patches P1, P2 and P3 are similar to each other. The
restoration progress of P1 in scale of (yr,d , yr ) can guide that
of P2 in scale of (yr , xr ). Namely, the (yd , y) pair has the
potential to provide rich useful guidance to fit x taking as
the input y. Thus, we use Lp

(
N

(
yr,d |2

)
, yr

)
to approximate

Lp (N (yr |2) , xr ).
Especially for the first iteration, the initialization of u(0) can

support image SR in the general sense, and the regularization
term ∥2− 2̃(k)

∥
2 can be ignored.

C. Internal Learning Optimization Strategy

To better solve the optimization problem Eq. (10) for
internal learning, we adopt the following three optimizations
in the implementation. We 1) use attention map to guide the
exploration of self-similarity, 2) adopt the exponential moving
average (EMA) updating mechanism to constrain the process
of model adaptation, reducing the learning burden of the loss
term ∥2− 2̃(k)

∥
2, 3) employ data augmentation techniques to

provide more diverse and comprehensive training supervision.
1) Self-Similarity Based Attention Map Guidance: We make

the network acquire the capability of reconstructing xr through
the training supervision of the pair (yr,d , yr ), relying primarily
on the cross-scale self-similarity of natural images. To effi-
ciently and precisely explore the self-similarity of images, we
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Fig. 4. Display of attention map guidance. (a) is the corresponding input image. (b) is the attention map for (a). The gradient map and similarity map are also
shown for comparison in (c) and (d), respectively. The color of the border of the image patches below is indicated by the color bar on the right, representing
the magnitude of map weights. It can be observed that the parts with larger weights usually have clearer textures and greater self-similarity in the attention
map, while the areas with smaller weights have less information.

propose an attention map to guide the training process as the
weight of loss.

Our proposed attention map is based on the transformer-
based image enhancement network, specifically using
SwinIR [5]. SwinIR consists of three main parts: shallow
feature extraction, deep feature extraction, and HQ image
reconstruction. The deep feature extraction is formed by
stacking Residual Swin Transformer Blocks. We leverage the
last multi-head self-attention in the last block, where deeper
layers focus more on high-level information, aiding in better
exploration of self-similarity.

Let us first review the multi-head self-attention in the Swin
transformer [35] layer. Taking an input of size H × W × C ,
the network initially transforms it into an H W/M2

×M2
×C

feature by dividing the input into non-overlapping M×M local
windows, where H W/M2 is the total number of windows.
Subsequently, it calculates standard self-attention indepen-
dently for each window, referred to as local attention. For a
local window feature X ∈ RM2

×C , the query, key, and value
matrices Q, K , and V are computed:

Q = X PQ, K = X PK , V = X PV . (11)

As for our attention map calculation, after obtaining an input
of size H×W×C , we perform pooling operations by a factor
of n and transform the input to obtain G, a feature of size
H W/n2

× C . We then compute global attention as follows:

Q = G PQ, K = G PK , (12)

A = SoftMax
(

QK T /
√

C
)

, (13)

AttentionMap(G) =
∑

i

Ai, j , (14)

Considering the multi-head self-attention mechanism, the
attention map is averaged among all heads. The attention map
is used during training to weight the loss on a pixel-wise basis,
thereby guiding the training of internal learning:

2
(k)
t+1 ← 2

(k)
t − η∇

(
w ◦ f (2

(k)
t )+ µ∥2

(k)
t − 2̃(k)

∥
2
)

(15)

where t is the current updating step, η is the learning rate, w

is the attention map and ◦ refers to pixel-wise multiplication.
The formula is also shown in line 13 of Algorithm 1.

In Fig. 4, we show the attention map and compare it with
other choices for guidance. The gradient map in Fig. 4(c)

is commonly used in the field of image enhancement [55],
[56], capable of extracting fine edges and textures. However,
the features extracted by this map are low-level, lacking the
understanding of the semantic information and self-similarity,
which results in assigning high weights to noise or less
frequently occurring parts.

The similarity map shown in Fig. 4(d) is a naive approach
focused on self-similarity. It obtains features for each patch
through the network feature extraction module, calculates
cosine similarity pairwise to get the similarity matrix, and
sums along one dimension of the matrix. The resulting value
for every single patch can approximately measure to which
degree the entire image is similar to that patch. However, this
similarity score can be high for parts with less information,
such as patches of sky or flat ground that are similar to other
solid-colored regions. These patches with less information
should not be focused on for model enhancement ability.

The attention map differs from the other two. The com-
putation mechanism of self-attention ensures that each patch
gives a higher attention score to beneficial patches for its
reconstruction, i.e., focusing more on patches with useful
information. The presentation in Fig. 4(b) demonstrates that
the extraction of the attention map aligns with our design
methodology. Patches with higher self-similarity, such as the
railroad tracks, receive higher weights, less frequent tree
crowns obtain moderate weights, and parts with less infor-
mation like blank sky have low weights.

2) EMA Updating: Overfitting on generated paired data
(yr,d , yr ) can potentially affect the feature extraction and
image restoration capabilities of external learning, so a balance
between internal learning and external learning is critical.
In Eq. (10), the loss ∥2−2̃(k)

∥
2 is the penalty term to satisfy

2 = 2e in Eq. (3). So we initialize the parameter 2 with
2

(k+1)
e . We also adopt the EMA strategy that is widely used for

semi-supervised learning, domain adaption, and unsupervised
learning as a convenient and efficient regularizer:

2At = α2At−1 + (1− α)2t , (16)

where 2t represents the parameters of a continuously updated
model at step t guided by Lp

(
N

(
yr,d |2

)
, yr

)
. 2At is the

EMA model parameter, which satisfies 2A0 = 2
(k+1)
e . α is

the decay rate in the range of [0, 1], which is responsible for
determining to which degree the network parameter 2 stays
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Algorithm 1 Training Process of AdaSSR

close to 2
(k+1)
e . This training strategy ensures a more stable

network training process and alleviates the learning burden on
the penalty term ∥2 − 2̃(k)

∥
2. The training is stopped based

on the change in non-reference subjective evaluation metrics
of the super-resolved x̂ image, and 2AT is taken as 2(k+1),
where T is the last step.

3) Data Augmentation: Random sampling directly from
(yr,d , yr ) pair results in few samples and insufficient diversity.
Due to the small volume of internal data, data augmentation is
of great importance. We utilize affine transformations, noise
injection, RandAugment [58], and unsharp masking (USM)
operations by chance. Affine transformations, particularly scal-
ing, help AdaSSR to deeply mine the self-similarity features
on images with different scales, while noise injection helps the
network become more robust to noise and learn high-frequency
textures more accurately. The random USM sharpening on
LR stresses the edge information, assisting in the learning of
the main object in the image. A more detailed description is
presented in the Section IV.

Algorithm 1 shows the pseudo code for AdaSSR framework.

IV. EXPERIMENTS

A. Experimental Setup

1) Internal Training: For the internal learning iteration,
we only use the real-world LR images to be tested as the data
source. During each internal learning iteration, the network
parameters are first initialized by the results of the external
iteration. Then, the pair data is generated from the LR input
yr through downsampling and data augmentation. Each step
is updated according to Eq. (15) and parameters are updated
in an EMA manner. We set Tstep to 1,500 while employing
NIQE of SR results for early stopping. We perform testing
every 100 steps. If the decrease in the metric is less than
0.05 for three consecutive times, we terminate the training.

For the attention weighting map, we perform a weighted
average between the attention map (weighted by 0.9) and a
map of all ones (weighted by 0.1), then clipped to the region
within [0.1, 3.0]. The attention map only needs to be computed
once for each LR input.

For random augmentation, we use rotation, flip, random
affine transformations, noise injection, RandAugment, and
unsharp masking operations by chance. The scale transforma-
tion in affine transformation can have a significant impact on
the experimental results. Excessively large scale values lead
to over-blur while too small values hinder the utilization of
self-similarity and result in a severe difference from the test
condition. Therefore, we uniformly sample scale values from
[0.5, 1.0]. We also add Gaussian and Poisson noise with a
probability of {0.24, 0.16}.

2) External Training: For the first external learning iter-
ation, we use the pre-trained model parameters from each
external learning method as the optimization result of Eq. (9).
In subsequent external learning iterations, we use paired data
generated with the HR images from DIV2K [59] dataset
and synthetic downsampling process as in Real-ESRGAN [3].
Tstep is also 1,500 with EMA mechanism applied.

3) Implementation Details: We conduct experiments on a
single RTX 2080 Ti GPU using PyTorch. The batch size is set
to 4. As for the Eq. (3), we set λ = 1×10−3 and µ = 1×10−4.
Unless otherwise noted, the experimental results presented are
obtained by applying AdaSSR on Real-ESRGAN [3] and the
ADMM process takes iteration Ti ter as 1. We apply Adam
optimizer with a learning rate of 1×10−4. The decay parameter
α of EMA is set to 0.999.

4) Testing Datasets: RealSR dataset [46] is a challenging
dataset for the task of real-world SR. The dataset contains
real-world paired LR-HR images of the same scene captured
using two full-frame DSLR cameras (Canon 5D3 and Nikon
D810) with four focal lengths. We take the 100 paired test
data for experiments. Due to the use of automatic settings for
focus, white balance, and exposure, as well as other technical
limitations in acquiring the dataset, the HR and LR images
are not perfectly aligned and the HR images can only be a
reference. We represent it as Ref GT in Fig. 5.

DRealSR [60] is also designed for complex real-world SR
degradations and collects real LR and HR image pairs from
five different DSLR cameras (Canon, Sony, Nikon, Olympus,
and Panasonic) in indoor and outdoor scenes.
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Fig. 5. Visual comparison on real-world LR input from RealSR. Ref GT refers to the reference ground truth obtained by shooting with a different focal
length. AdaSSR result is based on Real-ESRGAN. [Zoom in for best view].

5) Testing Methods: We compare our method with popular
single-image super-resolution (SISR) methods. The self-
supervised internal learning methods include ZSSR [22] and
KernelGAN [23]. The external learning methods include fol-
lows: SRCNN [31], RCAN [33], LDL [57], DASR [61],

HAT [4], SwinIR [5], BSRGAN [47], Real-ESRGAN [3]
and DiffIR [6]. SRCNN is a foundational SR convolutional
network consisting of three convolutional layers. RCAN is
an advanced CNN-based SISR method, while HAT and
SwinIR represent state-of-the-art Transformer-based methods
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and DiffIR represents the diffusion-based model. In addi-
tion, LDL and DASR are supervised methods designed for
real-world SR. MZSR [30] is a semi-supervised method
for real-world SR. Taking into account that some meth-
ods have released multiple models for selection, we made
the following choices: We test on the real SR GAN-based
HAT model, Swin-BSRGAN-Large model and DiffIR-RealSR
model. Specifically, Swin-BSRGAN-Middle model is applied
for DrealSR inference since the image size is large.

As demonstrated in Section III-A, the scale of external
data used has a nonnegligible influence on external learning
performance. We show the details for the training process
of comparison external learning models in the supplementary
material Section II-A.

6) Evaluation Metrics: We test 5 metrics: NIQE [62],
BRISQUE [63], NRQM [64], PI [65], LPIPS [66], which
are commonly used for measuring image perceptual quality
to evaluate the reconstruction performance.

B. Experimental Results

1) Visualization Comparison: In Fig. 5, we show the visu-
alization comparison on real-world LR images that contain
various content. Additional results are presented in the sup-
plementary materials.

External learning methods might fail in regions with out-of-
scope degradation, and it is difficult to control and diagnose
such errors in the reconstructed results. The visualization
comparison of external learning methods on real-world scenes
in Fig. 5 shows the following characteristics:
• External learning method heavily relies on the data distri-

bution of the dataset used for training. In (a), supervised
methods fail to recover clear results due to the unique
texture of the lamp glass cover, whose patterns take a
relatively low proportion in the external dataset.

• The feature reconstruction methods based on external
learning may not be effectively adapted to well handle
random real-world scenarios, such as in (c), where the
HAT method excels in reconstructing soft and delicate
high-definition textures but fails to match the features of
the towel input LR.

• Attention mechanisms like HAT can use non-local patch-
based LR to reconstruct SR, but the reconstructed result
in (c) has obvious color deviation and reduced contrast,
possibly due to the improper utilization of LR information
by the attention mechanism.

Internal learning methods often learn to over-blurred results.
Although they learn some specific degradation prior from the
LR, they have a poor ability to extract and restore high-quality
textures and structures, and to utilize semantic information
within the LR to recover corresponding high-frequency details.
In most scenarios, the ZSSR restoration results are similar to
Bicubic upsampling, showing a trend toward over-blurriness.
Although KernelGAN estimates the blur kernel of the LR
image, it can introduce additional noise and artifacts when
the blur kernel is not accurately estimated, as demonstrated in
Fig. 5(b) and (c) with overshoot and ringing artifacts.

Our proposed AdaSSR method exhibits excellent perfor-
mance in visualization comparison. In Fig. 5(a), it successfully

reconstructs the glass texture and makes the leaf contours
and textures more distinct. In Fig. 5(b), SwinIR and Real-
ESRGAN both incorrectly reconstruct the scale lines, while
KernelGAN results in severe ringing artifacts, HAT exhibits
bias in the recovery of number “6”, and the overall color of
HAT’s result becomes lighter. The reconstruction results of
other methods are not clear enough, while AdaSSR performs
better. In Fig. 5(c), AdaSSR fully explores self-similarity and
effectively reconstructs towel textures. In Fig. 6, we present
additional examples of AdaSSR applied to real-world sce-
narios, showcasing the performance of our method that our
approach demonstrates advantages in revealing details and
avoiding artifacts. More illustrations will be provided in the
supplementary material.

2) Quantitative Comparison: In Table I, we show the
quantitative comparison on RealSR dataset among SISR meth-
ods, including SOTA external and internal learning methods.
The AdaSSR framework can be combined with any external
learning network structures and here we show the results
on SRCNN, SwinIR, BSRGAN, Real-ESRGAN, and DiffIR.
It can be observed that the internal learning methods show
significant improvement over the Bicubic method, but still
fall short compared to the external learning methods. SRCNN
and RCAN are trained on simple Bicubic synthesized datasets
and therefore perform worse than other external learning
methods that use synthetic datasets based on more compli-
cated degradation models and have stronger generalization
capacity. In the case of × 2 downsampling, the combination
of SRCNN and AdaSSR shows a significant improvement.
This is attributed to the substantial gap between bicubic
downsampling and real-world degraded images. Internal learn-
ing effectively bridges this gap. On the other hand, models
like SwinIR, BSRGAN, Real-ESRGAN, DiffIR, etc., utilize
complex synthetic processes to simulate the degradation of ×
2 downsampling images well. AdaSSR provides a relatively
smaller improvement in this context. However, in the case
of × 4 downsampling, where image degradation is severe,
a noticeable gap exists between synthetic data and degraded
data. AdaSSR brings a significant improvement for external
learning methods under these circumstances. For a more com-
prehensive comparison, we present the experimental results
on DrealSR in Table II. AdaSSR demonstrates outstanding
performance in more diverse shooting scenarios.

3) Analysis on Self-Similarity: Self-similarity is an intrinsic
property of natural images [25], [67]. Internal learning highly
relies on the self-similarity of images, which not only helps
the modeling of the HR-LR relationship but also assists the
estimation of the current degradation environment.

Below we discuss the impact of self-similarity on AdaSSR.
In Fig. 7, we display a set of images with varying degrees of
self-similarity: (a) exhibiting low self-similarity, (b) featuring
a certain level of self-similarity in the person’s hair, and (c)
showcasing strong self-similarity in the bushes.

We evaluate the effect of self-similarity on our method.
The results are shown in Table III. AdaSSR is based on
Real-ESRGAN as a baseline. The Difference demonstrates the
improvements of our method compared to Real-ESRGAN.
It can be observed that our approach brings significant
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Fig. 6. Visualization comparison on real-world LR images. Cases (f) and (g) are from DRealSR while (h) is from the internet. AdaSSR result is based on
Real-ESRGAN. [Zoom in for best view].

Fig. 7. Image samples with varying degrees of self-similarity.

improvements to images with strong self-similarity, and also
exhibits certain performance gains on images with little self-
similarity. Additionally, during the internal learning process,
the use of non-reference metrics, e.g. NIQE, to seek optimal
results ensures that the performance is bounded by the external
learning method.

4) Analysis on Benefits from External Learning: In order
to demonstrate how internal learning benefits from external
learning, we list three kinds of experiments that show the
necessity and benefits of combining the two instead of only
applying internal learning. As shown in Fig. 8, we show
the visualization comparison results of the internal learn-
ing method, AdaSSR w/o external learning, and AdaSSR.
The comparison reveals that using only the internal learning
method results in severe artifacts, poor image clarity, and
significant ringing and overshoot. Internal learning methods

ZSSR, KernelGAN, and MZSR all apply to the light model.
As for the AdaSSR w/o external learning case, the amount
of internal learning data is insufficient to support the training
of a normal size network (e.g., RRDBNet [11] in this case),
resulting in abnormal output performance. In contrast, the
results of AdaSSR are more consistent with human subjective
perception.

5) Experiments on Different External Learning Methods:
In Fig. 9, we compare the visualization results before and
after applying AdaSSR to various external learning methods.
External learning methods exhibited domain gap factors in
real-world SR scenarios vary. For instance, the Real-ESRGAN
network tends to simplify output textures, resulting in overly
flat SR results, as shown in Fig. 9(a); SWINIR produces
relatively blurry results in real-world SR; and DiffIR tends
to generate color casts, as shown in Fig. 9(c). AdaSSR,
by utilizing test image-specific self-learning, makes targeted
corrections to these external learning methods, resulting in
SR outcomes that align more closely with human subjective
perception.

In the AdaSSR framework, the improvement in different
external learning methods is mainly influenced by two factors:
the capacity of the network itself and the generalization
capacity of the model. For the first point, if the network has
low capacity, it poorly fits the data distribution in the external
dataset. In real-world image cases, it benefits more from
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TABLE I
QUANTITATIVE COMPARISON AMONG SISR METHODS. WE SHOW THE PERFORMANCE OF ADASSR AND COMPARISON METHODS ON REALSR DATASET

OF SCALE ×2, ×4. THE SYMBOL ↑ INDICATES THAT HIGHER METRIC VALUES ARE BETTER, WHILE ↓ INDICATES THE OPPOSITE. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD

TABLE II
QUANTITATIVE COMPARISON AMONG SISR METHODS ON DREALSR DATASET OF SCALE ×4. BELOW IS THE SUPER-RESOLUTION PERFORMANCE OF

ADASSR AND COMPARISON METHODS. THE SYMBOL ↑ INDICATES THAT HIGHER METRIC VALUES ARE BETTER, WHILE ↓ INDICATES THE
OPPOSITE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

the supplementary information provided by internal learning,
resulting in significant improvement. We present the improve-
ment in metric LPIPS for different external learning methods
in Table VI. SRCNN network has a small capacity and learns
poor reconstruction ability from the external dataset, result-
ing in a large improvement under the AdaSSR framework.
In contrast, networks like Real-ESRGAN, SWINIR, DiffIR,

and BSRGAN have a large capacity and inherently strong
SR capabilities, so their improvement under the AdaSSR
framework is at the same level.

For the second point, the greater the impact of the domain
gap on the method’s performance, the higher the potential for
improvement. A network with poor generalization capacity
is more affected by the domain gap when facing unknown
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Fig. 8. Visualization comparison between internal learning methods, AdaSSR w/o external learning and AdaSSR.

Fig. 9. The visualization comparison of different external learning methods before/after applying AdaSSR.

real-world degradation cases, leading to blurred, artifact-
ridden, and low-quality SR results. The AdaSSR framework
can provide specific domain knowledge tailored to the current

scenario, resulting in notable improvement. As shown in
Table VII and Fig. 9(a), we show the quantitative and visu-
alization comparison of different external learning methods
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TABLE III
THE EFFECT OF SELF-SIMILARITY ON PERFORMANCE

TABLE IV
EXPERIMENTS ON THE EFFECT OF THE NUMBER OF ITERATIONS ON THE

PERFORMANCE OF ALTERNATING UPDATING PROCESS

TABLE V
ABLATION STUDY ON PARAMETER α FOR EMA UPDATING

TABLE VI
THE IMPROVEMENT IN DIFFERENT EXTERNAL LEARNING METHODS ON

REALSR DATASET OF SCALE ×4

TABLE VII
THE IMPROVEMENT IN DIFFERENT EXTERNAL LEARNING METHODS ON

NIKON_006_LR4 IN REALSR

before/after applying AdaSSR on image Nikon_006_LR4 from
the RealSR dataset. It can be observed that the results of
SRCNN are too blurry, and the reconstruction results of
Real-ESRGAN appear over-smooth, not aligning with the
expected real-world HR results. AdaSSR brings a remarkable
performance improvement on SRCNN and the second-largest
improvement on Real-ESRGAN, with great improvements also
seen in the other three methods.

6) Multi-Image Condition: Images captured by the same
photographic equipment exhibit similarity in degradation con-
ditions. Therefore, we also evaluated the performance of
AdaSSR in multi-image scenarios, as shown in Table IX. The
RealSR dataset comprises two sets of data captured by Canon
and Nikon devices, each containing 50 groups of images. For
the multi-image scenario, we train for 10,000 iterations for

TABLE VIII
THE COMPUTATION TIME OF ADASSR

each capture type and then test the performance among images
taken by the same shooting equipment.

It can be observed that, compared to the single-image
learning setting, the improvement in the multi-image testing
scenario is less significant. However, AdaSSR still brings
a substantial improvement over the corresponding external
learning methods with fewer total iterations.

7) Computation Time: We show the computation time of
AdaSSR and identify several methods to accelerate AdaSSR
in practical applications. As shown in Table VIII, we show the
inference time for single real-world image based on the back-
bone Real-ESRGAN and SRCNN. We also show the inference
time under the same setting of Table IX, which is referred
to AdaSSR+Real-ESRGAN multi.. As indicated in Table I,
we can use a lightweight backbone like SRCNN to surpass the
results of larger external learning SR models such as RCAN
and HAT. As demonstrated in the results of the multi-image
case, for a set of images captured under the same unknown
shooting conditions (same camera equipment), we can achieve
significant performance improvements in reconstructing real
images within a short training time. By using an external
learning model and applying the AdaSSR framework for min-
imal, intermittent learning on images captured by the device,
we can significantly enhance performance with a relatively
low computational cost, thereby improving the usability of
our method in real-world applications.

C. Ablation Study

We conduct the ablation study on the proposed design of
AdaSSR, including the number of alternating iterations, the
EMA updating parameter, and other components.

1) Number of Alternating Iterations: As demonstrated in
Eq. (5)-(7), our algorithm updates parameters through an
alternating updating process. Table IV demonstrates the impact
of the number of iterations on performance. Experimental
results are the average from 10 runs on images in the RealSR
dataset.

It can be observed that, with an increase in the number
of iterations, the performance of results obtained in Eq. (6)
gradually improves. External learning and internal learning
together contribute to the overall effectiveness. Considering
higher efficiency, unless otherwise specified, the presented
results in the paper are based on one round of iteration updates.

2) EMA Updating Parameter: We carry out an ablation
study on α for EMA updating in the self-supervised learning
part, as in Eq. (16). The experiment tests on RealSR with
scale ×4. As shown in Table V, we find that the performance
is optimal when alpha lies in the range around 0.99 to 0.999.
When alpha is too large, such as 0.9999, or too small, such
as 0.9, the performance deteriorates. This further confirms
the significance of our research’s focus on the combination
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TABLE IX
QUANTITATIVE COMPARISON FOR MULTI-IMAGE CASE. CANON AND NIKON REPRESENT TWO DATA ACQUISITION SCENES IN THE REALSR DATASET. *

MEANS THE INTERNAL LEARNING PROCESS IN ADASSR CARRIED OUT AMONG IMAGES TAKEN BY THE SAME SHOOTING EQUIPMENT

TABLE X
ABLATION STUDY ON COMPONENTS IN THE ADASSR FRAMEWORK

between internal learning and external learning. The best
reconstruction performance is achieved when both aspects are
combined, while suboptimal results occur when either aspect
dominates excessively.

3) Other Components: We conducted an ablation study
on RealSR for key components of the AdaSSR framework,
and the results are presented in Table X. The Backbone
corresponds to the results of the pre-trained model from Real-
ESRGAN, representing the model parameters 21

e . Internal
learning refers to carrying out random sampling of (yr,d , yr )

for model updates, where yr,d is obtained by bicubic down-
sampling of yr . Kernel estimation incorporates the estimation
of degradation conditions during internal learning, with yr,d
obtained from the estimated blur kernel. Data augmenta-
tion and attention map guidance follow the descriptions in
Section III. These components further enlarge the sample-
adaptive advantage of internal learning, making them critical to
the effectiveness of AdaSSR. From the performance exhibited
across various evaluation metrics, each component of AdaSSR
contributes significantly to the final results.

V. CONCLUSION

In this work, we propose a novel semi-supervised frame-
work, AdaSSR, for real-world super-resolution tasks. We ana-
lyze that internal learning relies more on a sample-dependent
degradation prediction, while the effectiveness of external
learning is more dependent on the feature extraction capabil-
ities learned from a diverse range of data. AdaSSR integrates
the strengths of both internal learning and external learning
in an ADMM iteration manner in combination with atten-
tion map guidance. AdaSSR has demonstrated outstanding
performance in real-world super-resolution tasks, prompting
inspiration for the integration of internal learning and external
learning.
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